工程化催化剂表界面实现酸性膜电解槽中超80%的CO2利用率

  • A+
通过电化学过程将CO2转化为可再生燃料和化工原料是一种极具前景的化工电气化技术。尽管引入阴离子交换膜(AEM)到膜电解槽(MEA)有助于提高CO2的电化学转化性能,然而CO2还原过程中碳酸盐的形成降低了CO2的利用率,从而降低该工艺的技术经济可行性。

理论上,阳离子交换膜(CEM)和酸性电解液的组合不会产生碳酸盐,但阴极催化剂的局部酸性环境更利于析氢副反应 (HER) 而不是 CO2还原反应(CO2RR),导致法拉第效率和碳效率较低。通过碱金属阳离子和表面改性技术等策略来调节膜电解槽(MEA)和流动电解槽(Flow cell)中阴极催化剂的局部微环境从而提高酸性电解槽中CO2RR的性能被广泛研究。然而,在长周期运行过程中,流动电解槽(Flow cell)中酸性电解液中高浓度的碱金属阳离子也会在催化剂和/或气体扩散电极上与CO2反应并析出碱金属碳酸盐结晶物,占据CO2气体扩散通道,限制CO2到达催化剂表面。因此,发展有效抑制或减缓碳酸盐形成并提高碳效率的策略已成为推动CO2电解技术应用的核心和重点。
在此背景下,西南交通大学伍华丽研究员联合法国国家科学研究中心(CNRS)-欧洲膜研究所(IEM)Damien Voiry教授构建了一种微观结构可控的交联聚乙烯亚胺 (PEI) 超疏气水凝胶缓冲层,并应用于双极性膜(BPM)和阳离子交换膜(CEM)的膜电解槽中(Fig.1)。该缓冲层不仅有效促进CO2在缓冲层内的原位形成及传质,同时在酸性CO2RR中也实现阴极催化剂pH值可控的局部反应微环境。通过改变PEI聚合物的浓度可以精确调控多孔超疏气水凝胶的微观结构。CsHCO3溶液浸透的多孔超疏气水凝胶层集成到基于BPM的膜电解槽(BPM-MEA)中,以商业化的Ag作为CO2转化CO的催化剂,在CO分电流密度超过300 mA cm−2时实现了81%±5.3的高CO2单室利用率(SPU)和21.7%±3.1的高CO2单室转化率(SPC) (Fig.2),摆脱了中性阴离子型膜电解槽(AEM-MEA)中CO2单室利用率(SPU)仅为50%的理论最高值。为了进一步证明我们方法的可行性,我们成功地将多孔超疏气水凝胶层集成到基于CEM的膜电解槽(CEM-MEA)中,并使用pH=0.5的电解液作为阳极电解液,获得了77%±2.4的CO2单室利用率,同样超过了阴离子型膜电解槽(AEM-MEA)中CO2单室利用率(SPU)的极限,并且CEM的引入有效地将CO2的跨膜运输抑制到0.5%以下(Fig.2)。为探究疏气水凝胶缓冲层对CO2还原的作用机制,我们进行了仿真物理模拟(COMSOL),以研究动态条件下CO2在膜电解槽中的反应、扩散和迁移行为。模拟结果表明,超疏气水凝胶基缓冲层的孔隙率可以促进原位CO2的生成并从缓冲层与阳离子交换层(CEL)的界面迁移到阴极催化剂附近,并最大限度地降低膜电解槽的内部欧姆电阻(Fig.3)。同时,超疏气水凝胶层也能有效控制H+向阴极的迁移,为阴极催化剂提供pH值较高的反应微环境,促进CO2RR。此外,超疏气水凝胶中CsHCO3的使用还可以在催化剂表面形成碱金属阳离子诱导效应 (Cs+),进一步提高CO2还原效率。
1
Fig.1 The schematic shows a method of engineering the catalyst interface to improve the carbon efficiency in the BPM/CEM-MEA configuration (a); the surface morphology (b) and the cross-section morphology (c), as well as the related EDX mapping (d) of 2.1% PEI constructed buffering layer on Ag GDE. The air-contact angle of pristine Ag GDE and 2.1% PEI-loaded Ag GDE (e).
2
Fig. 2 The relationships among flow rate current density and CO2 utilization efficiency in BPM-based MEA with an optimized Ag/buffer cathode (a), CEM-based MEA with an optimized Ag/buffer cathode (b) and AEM-based MEA electrolyzers with a pure Ag cathode (c). Comparison of energy efficiency on different MEA configurations (d). Comparisons of carbon efficiency in BPM-based MEA(e) and CEM-based MEA(f) electrolyzers. The red balls and red hollow rhombus refer to the SPU and SPC of this work, while the black balls and black hollow rhombus refer to the SPU and SPC of literature measured at 15 ml/min and 1 ml/min of CO2 flow rates. The dashed lines indicate theoretical carbon efficiency for CO in neutral media AEM-based MEA.
7
Fig. 3 Schemes and mechanisms of buffering layer inserted in BPM-MEA configurations (a) and CEM-MEA configurations (d). COMSOL Multiphysics simulations of pH (b) and CO2 concentration(c) in BPM-MEA configurations with -4.0 V continuous operation, and a comparison of BPM and CEM (e), as well as a comparison of CO2 concentration in CEM-MEA configurations with -3.5V continuous operation (f).
文章信息:Engineering the catalyst interface enables high carbon efficiency in both cation-exchange and bipolar membrane electrolyzers. Applied Catalysis B: Environment and Energy 361 (2025) 124691.


weinxin
我的微信
关注我了解更多内容

发表评论

目前评论:0