- A+
研究背景
相比于一价载流子和二价载流子(如 Li+、Na+、K+、Mg2+、Zn2+、Ca2+),三价载流子(即 Al3+)由于其三电子的电化学特征而具有更高的电荷密度,对应的电化学储能器件也具有更高的理论容量。然而现有基于三价 Al3+ 的电化学储能器件,即铝离子电池的进一步发展仍受限于以下几个关键问题:较低的能量转化效率、较差的循环稳定性以及较慢的充放电速度。这些问题归根结底都是由 Al3+ 周围较强的静电场导致的,较强的静电场使 Al3+ 与电解液中的溶剂分子以及宿主电极之间存在很强的相互作用。这导致 Al3+ 在电极/电解液界面上的去溶剂化过程非常缓慢,也使得去溶剂化之后的 Al3+ 在电极材料内部的传输非常困难。
屏蔽 Al3+ 周围静电场最简单且最有效的方法是在其周围引入一个溶剂化壳层,也就是采用溶剂化 Al3+ 作为载流子;当使用溶剂化 Al3+ 作为载流子时,对应器件的电化学储能机理也就变成了快速的电容过程。电容型的储能机理可以为器件提供接近 100% 的能量转化效率、优异的循环稳定性以及超快的充放电速度。虽然具有以上诸多优势,但溶剂化 Al3+ 具有较大的水合半径(0.475 nm)和较高的去溶剂化能(4525 kJ mol−1),这些特点对电极材料孔结构的设计提出了严苛的要求。即为了实现 Al3+ 的高效存储,电极材料应具有足够大的特征孔去容纳大尺寸的 Al3+,同时为了保证高的电荷存储密度,电极材料还应具有致密有序的微观结构,然而现有的电容型电极材料均不具备这些特征。因此,为了实现溶剂化 Al3+ 的高效存储,设计并构建孔结构与溶剂化 Al3+ 高度匹配的电极材料是非常关键的,同时也是极具挑战的。
工作简介
针对以上问题,近日清华大学化学系曲良体教授课题组开发了一种自适应的电极材料孔结构重塑方法,对石墨烯、MXenes 等典型电容型电极材料的孔结构进行了重塑,并以此实现了电容型电极材料对溶剂化 Al3+ 的高效存储。具体而言,该自适应的电极材料孔结构重塑方法是在电场力驱动下,向电极材料的特征孔内嵌入起支柱作用的离子,从而使材料在不断适应离子存储要求的同时完成自身孔结构的重塑。采用该方法重塑的电极材料其孔结构既能有效容纳大尺寸的溶剂化 Al3+,同时又能对溶剂化 Al3+ 离子进行最为致密的存储,从而使电极材料表现出超高的电荷存储密度。得益于这种电极材料孔结构重塑方法的良好普适性,作者进一步开发了基于石墨烯和 MXenes 的摇椅式铝离子电容器。该铝离子电容器具有 2.0 V 的高工作电压,112 W h L−1 的高能量密度,以及30 000 W L−1 的高能量密度,同时能稳定充放电循环超过 10 000 次。相关成果发表在英国皇家化学会期刊 Energy Environ. Sci. 上,清华大学化学系博士毕业生马鸿云为本文第一作者,中科院兰州化物所阎兴斌研究员(现中山大学材料科学与工程学院教授)为本文共同通讯作者。
图文详情
▲ | Fig. 1 An aqueous rocking-chair aluminum-ion capacitor. (a) Merits of Al3+ ions acting as the charge carriers. (b) Schematic illustration of the aqueous rocking-chair aluminum-ion capacitor. (c) Typical cyclic voltammetry curves of the graphene-based cathode and the MXene-based anode. |
▲ | Fig. 2 Pore-structure remolding of the graphene-based cathode. (a) Schematic illustration of the self-adaptive electrochemical pore-structure remolding process. (b) The first twenty CV curves of HOPC in the Al2(SO4)3 electrolyte. (c) The first twenty CV curves of HOPC in the H2SO4 electrolyte, producing electrochemically activated HOPC (AHOPC). (d) The first twenty CV curves of AHOPC in the Al2(SO4)3 electrolyte, producing completely remolded AHOPC (RHOPC). (e–g) Contour-type in situ Raman spectra of (e) HOPC in the Al2(SO4)3 electrolyte, (f) HOPC in the H2SO4 electrolyte, and (g) AHOPC in the Al2(SO4)3 electrolyte. |
▲ | Fig. 3 Electrochemical performance of the RHOPC electrode in the Al2(SO4)3 electrolyte and its charge storage mechanism study. (a) CV curves at different scan rates (mV s−1). (b) GCD curves at different current densities (A g−1). (c) Gravimetric and volumetric capacitances at different current densities. (d and e) In situ FTIR spectra with different representations. (f) Corrected contour-type in situ FTIR spectra. (g) Electrode mass change upon potential variation during the EQCM test. (h) Electrode mass change versus CV scanning during the EQCM test. |
▲ | Fig. 4 Pore-structure remolding of the MXene-based anode. (a and b) TEM image (a) and STEM image (b) of Ti3C2Tx sheets. (c–f) TEM image (c), STEM image (d), HRTEM image (e), and SAED pattern (f) of AT-Ti3C2Tx sheets. (g and h) Cross-sectional SEM images of the (g) Ti3C2Tx film and (h) AT-Ti3C2Tx film. (i) The first twenty CV curves of AT-Ti3C2Tx in the Al2(SO4)3 electrolyte. (j) Contour-type in situ XRD patterns of AT-Ti3C2Tx in the Al2(SO4)3 electrolyte. (k) Typical XRD patterns of AT-Ti3C2Tx in the Al2(SO4)3 electrolyte before and after pore-structure remolding. |
▲ | Fig. 5 Electrochemical performance of the RAT-Ti3C2Tx electrode in the Al2(SO4)3 electrolyte and its charge storage mechanism study. (a) CV curves at different scan rates (mV s−1). (b) GCD curves at different current densities (A g−1). (c) Gravimetric and volumetric capacitances at different current densities. (d) Contour-type in situ Raman spectra. (e) Contour-type in situ XRD patterns. (f) In situ XRD patterns. (g–i) STEM-EDS mapping at fully discharged state: (g) TEM image, (h) corresponding STEM image, and (i) EDS mappings of characteristic elements. |
▲ | Fig. 6 Electrochemical performance of as-built aqueous rocking-chair AIC. (a) CV curves with different cut-off voltages (V). (b) CV curves at different scan rates (mV s−1). (c) GCD curves at different current densities (A g−1). (d) Gravimetric and volumetric capacitances at different current densities. (e) Capacitance delivery ratios of both cathode and anode at different current densities. (f) Ragone plots of the AIC, with red stars based on active materials and blue stars based on the whole device. (g) Long-term cycling stability at a current density of 5 A g−1. |
工作总结
本文开发了一种自适应的电极材料孔结构重塑方法,并对石墨烯、MXenes 等典型电容型电极材料的孔结构进行了重塑,从而使其能够对溶剂化 Al3+ 进行高效存储。经过孔结构重塑的电极材料其孔结构既能有效容纳溶剂化 Al3+,同时又能保证对溶剂化 Al3+ 进行最致密的存储,从而达到最理想的电荷存储状态。对于上述自适应的孔结构重塑过程,以及溶剂化 Al3+ 在电极材料内部的存储状态,本文分别采用原位拉曼光谱、原位XRD、原位红外光谱以及电化学石英晶体微天平等先进的原位表征手段进行了系统地研究。在此基础之上,构建出了高性能的摇椅式铝离子电容器,该铝离子电容器表现出 2.0 V 的高工作电压,112 W h L−1 的高能量密度,30 000 W L−1 的高功率密度,以及循环 10 000 圈之后 91.8% 的高容量保持率。如此优异的电化学性能充分体现出三价 Al3+ 作为载流子在电化学储能器件中的优越性,同时也进一步证明本文所开发的自适应孔结构重塑策略对三价 Al3+ 高效存储的有效性与合理性。
论文信息
Aqueous rocking-chair aluminum-ion capacitors enabled by a self-adaptive electrochemical pore-structure remolding approach
Hongyun Ma, Hongwu Chen, Yajie Hu, Bingjun Yang, Jianze Feng, Yongtai Xu, Yinglun Sun, Huhu Cheng, Chun Li, Xingbin Yan*(阎兴斌,中山大学) and Liangti Qu*(曲良体,清华大学)
Energy Environ. Sci., 2022,15, 1131-1143
http://doi.org/10.1039/D1EE03672F

目前评论:0