on style="white-space: normal; line-height: 1.75em; box-sizing: border-box;">▲第一作者:杨少伟
https://doi.org/10.1021/acscatal.1c05236
本文采用一种简便的方法制备了同时具有两种钴活性位点(单原子(Co1)和 纳米颗粒(Cop))的 (Co1→Cop)/N-CNT 级联催化剂。 该催化剂可通过对(HMF)的“接力式”催化氧化,实现其高效转化。实验研究发现 Co1 位点有利于羟甲基氧化为醛基,而 Cop 位点对醛基向羧基的转化表现出更高的活性。 得益于此独特的“接力式”催化特性, (Co1→Cop)/N-CNTs 对 5-羟甲基糠醛(HMF)有氧氧化表现出高的催化活性。该研究为多中间体级联反应用催化剂的设计提供了一种新的思路。对于串联反应而言,反应过程相对复杂,且通常涉及到不同性质官能团的转化。如将 HMF 氧化为2,5-呋喃二甲酸(FDCA)的过程中,既涉及羟甲基氧化为醛基的过程,同时也涉及醛基向羧酸的转化。由于反应机理差异,单一催化活性位点可能对两种氧化反应表现出不同的催化活性,最终导致 HMF热催化转化反应条件苛刻、转化效率不尽如人意等问题。根据多步反应各自特点,构建双活性位点“接力式”催化剂,发挥不同位点对不同官能团特异性高效催化的特性,有可能实现对这种复杂串联的高效催化转化。西北工业大学张秋禹教授、张和鹏教授团队以简单的ZnCo-ZIF为前驱体,通过控制热解条件制备了一种同时存在Co单原子(Co1)和Co纳米颗粒(Cop)的新型双活性位点催化剂。透射电镜表明,(Co1→Cop) /N-CNTs中包含较多的碳纳米管,平均粒径约为10 nm的Cop包覆在碳纳米管的顶端,而在碳纳米管表面负载了丰富的Co1。▲Figure 1. Schematic illustration for the synthesis of (Co1→Cop)/N-CNTs from ZnCo-ZIF.
▲Figure 2. (a and b) TEM images of (Co1→Cop)/N-CNTs. (c) Co NP size distribution in (Co1→Cop)/N-CNTs. (d) HAADF-STEM image and corresponding element mapping images showing the distributions of (C (green), N (yellow), and Co (cyan) within the (Co1→Cop)/N-CNT catalyst. (e) HRTEM images of (Co1→Cop)/N-CNTs. (f) HAADF-STEM image of (Co1→Cop)/N-CNTs in the nanoparticle-free region, where single Co atoms are clearly seen.
正如预期的那样,(Co1→Cop)/N-CNTs对 HMF 热催化氧化反应表现出卓越的催化活性,在 常压O2气氛以及100 °C的条件下,反应8小时可实现HMF的100%转化率及96%的 FDCA 产率,碳平衡也可以达到100%。即使反应温度降低至 80 °C,HMF 转化率和 FDCA 选择性也分别达到 100% 和 79%。实验和动力学研究表明,Co1 活性位点对羟甲基氧化为表现出高的催化活性,加速了中间体 HMFCA 向 FFCA 的转化;而适当粒径的 Cop 促进了醛基向羧基的转化,从而加速HMF向HMFCA以及FFCA 向FDCA的转化。受益于 Co1 和 Cop 活性位点的不同特性,(Co1→Cop)/N-CNTs 催化剂可对串联氧化中每个基元反应加速,从而以“接力式”的方式实现HMF的高效转化。同时该催化剂还表现出优异的循环稳定性和工业化前景,放大试验后可制备得到超过10 g的高纯FDCA。▲Figure 3. (a) Catalytic performance of (Co1→Cop)/N-CNTs, (Co1→Cop)/N-CNTs-etched and (Co1→Cop)/N-CNTs-KSCN for HMF oxidation. (b) Catalytic performance of (Co1→Cop)/N-CNTs, (Co1→Cop)/N-CNTs-etched and (Co1→Cop)/N-CNTs-KSCN for HMFCA and FFCA oxidation. (c) Arrhenius plots for (Co1→Cop)/N-CNTs-etched and (Co1→Cop)/N-CNTs-KSCN in oxidations of HMF, HMFCA and FFCA. The ln r values were calculated based on the product generation rate versus reaction time.
▲Scheme 1. Schematic illustration of HMF transfer to FDCA accelerated by different activity sites (Co1 and Cop).
综上所述,我们设计并制备了一种具有双活性位点“接力式”Co基催化剂。该催化剂具有制备方法简单、易于放大等优点。受益于 Co1 和 Cop 活性位点的不同特性,(Co1→Cop)/N-CNTs 催化剂可对串联氧化中每个基元反应加速,从而以“接力式”的方式实现HMF的高效转化,该研究为多中间体级联反应用催化剂的设计提供了一种新的思路。https://pubs.acs.org/doi/10.1021/acscatal.1c05236
目前评论:0