JECE新文:宏观光芬顿催化剂Fe-g-C3N4/CF在可见光照射下可光催化降解水中的阳离子和阴离子有机污染物

  • A+

原文链接

https://www.sciencedirect.com/science/article/pii/S2213343720305686


文章摘要 

    

      通过将芬顿状催化剂固定在碳纤维毡(CF)表面上,合成了工业应用的Fe (II)/Fe(III) 掺杂的g-C3N4光催化剂。FTIR,XDR,FE-SEM,BET,XPS和元素映射等不同技术可用于证明其形态特征。结果表明,氧化铁的存在扩展了g-C3N4网络的比表面积。MB和RhB(作为阳离子)和MO(作为阴离子有机污染物)的光降解表明FeCl3/三聚氰胺摩尔比为(1:5)时表现出最高的光催化活性。在H2O2的存在下,可见光可以提高催化剂上芬顿样反应的速率。自由基清除剂实验表明,乙二胺四乙酸和异丙醇作为空穴和羟基自由基清除剂会大大降低该过程的效率。最终催化剂Fe-g-C3N4(1:5)/CF经过5个循环后稳定且有效。因此,制备的催化剂可作为废水处理中的有效催化剂。





创新点ong>


    <li>

    合成了工业应用的Fe(II)/Fe(III)掺杂的g-C3N4光催化剂。

  • 报道了MB和RhB作为阳离子的光降解和MO作为阴离子有机污染物的光降解。

  • 最终催化剂,即Fe-g-C3N4 (1:5)/CF,经过5个循环后稳定且有效。

图1.(a)CF;(b)g-C3N4 /CF;(c-d)Fe-g-C3N4 (1:5)/CF的FESEM图。


图2.Fe-g-C3N4(1:5)/CF的元素映射图。


图3.(a)CF, g-C3N4, g-C3N4/CF, Fe-g-C3N4(1:5)/CF;(b) Fe-g-C3N4(1:5)/CF, Fe3O4,Fe2O3和Fe的XRD图谱。


图4.Fe-g-C3N4(1:5)/CF催化剂的FT-IR光谱


图5.CF,g-C3N4/CF和Fe-g-C3N4(1:5)/CF的C 1s和N 1s反褶积XPS光谱曲线。


图6.Fe-g-C3N4(1:5)/CF的O 1s和Fe 2p的反卷积XPS光谱。


图7.光照下的Fe-g-C3N4(1:5)/CF催化剂(40 mg)和H2O2(0.08 M), pH=7下降解MB (10 ppm, 100 mL)后的UV-vis吸收光谱和相应的峰强度。


图8.(a)Fe-g-C3N4(1:5)/CF催化剂中Fe含量的优化。(b)Fe-g-C3N4(1:5)/CF催化剂中三聚氰胺用量的优化。所有反应均在光照和相似条件下进行: MB (10 ppm, 100 mL)和H2O2(0.08 M), pH=7。


图9.(a)pH值对MB降解和Fe浸出的影响, H2O2(0.08 M), pH=7。(b)H2O2量的优化。所有反应均在光照和相似条件下进行:MB(10 ppm, 100 mL)和Fe-g-C3N4(1:5)/CF催化剂(40 mg)。


图10.(a)Fe-g-C3N4(1:5)/CF催化剂,光和H2O2对MB降解的影响,pH=7。(b) -ln(Ct/C0)图与MB降解时间的关系,pH=7。



11.连续运行四次后,Fe-g-C3N4(1:5)/CF的可重复使用性。反应条件MB(10 ppm, 100 mL)和Fe-g-C3N4(1:5)/CF催化剂(40 mg),H2O2(0.08 M)和光照,pH=7。


图12.使用Fe-g-C3N4(1:5)/CF催化剂(40 mg),pH=7,H2O2(0.08 M)和光对a)MO (10 ppm, 100 mL), (b)RhB(10 ppm, 100 mL)降解时的UV-vis吸收光谱和相应的峰强度。


图13.在Fe-g-C3N4(1:5)/CF催化剂(40 mg),光和H2O2(0.08 M)存在的情况下,不同清除剂对MB降解的影响,pH=7。



 英文摘要原文(Abstract)


         An industrially applicable Fe(II)/Fe(III) doped in g-C3N4 photo-catalyst has been synthesized byimmobilizing this Fenton-like catalyst on the surface of carbon fibers felt(CF). Different techniques such as FTIR, XDR, FE-SEM, BET, XPS, and elemental mapping are used for demonstrating its morphological features. The results revealed that the presence of iron oxides had extended the specific surface area of the produced g-C3N4 network. The photo-degradation of MB and RhB, as cationic, and MO as anionic organic pollutants indicated that FeCl3/melamine molar ratio of (1:5) exhibited the highest photocatalytic activities. The visible light can increase the rate of Fenton-like reaction over the catalyst in the presence of H2O2. The radical scavenger experiments did show that ethylenediaminetetraacetic acid and isopropanol as holes and hydroxyl radicals scavengers extensively decrease the efficiency of the process. The final catalyst, that is, Fe-g-C3N4(1:5)/CF, was stable and efficient after 5 cycles. Therefore, the prepared catalyst is offered as an efficient catalyst in the wastewater treatments.


weinxin
我的微信
关注我了解更多内容

发表评论

目前评论:0